

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

2D NMR Study of Phototetrahydro Zexbrevin A

L. Rodriguez-hahn^a; M. Jimenez^a; R. Saucedo^a; M. Soriano-garcia^a; R. A. Toscano^a; E. Diaz^a; Daniel Davoust^b; Christopher Jankowski^{bc}

^a Instituto de Quimica, Universidad Nacional Autonoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, México, D. F. ^b Faculté des études supérieures et de la recherche, Université de Moncton, Moncton, N.-B., Canada ^c Université de P. et M. Curie (Paris VI), Paris, France

To cite this Article Rodriguez-hahn, L. , Jimenez, M. , Saucedo, R. , Soriano-garcia, M. , Toscano, R. A. , Diaz, E. , Davoust, Daniel and Jankowski, Christopher(1987) '2D NMR Study of Phototetrahydro Zexbrevin A', *Spectroscopy Letters*, 20: 10, 843 — 851

To link to this Article: DOI: 10.1080/00387018708081592

URL: <http://dx.doi.org/10.1080/00387018708081592>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

2D NMR STUDY OF PHOTOTETRAHYDRO
ZEXBREVIN A

L. Rodriguez-Hahn, M. Jimenez, R. Saucedo, M. Soriano-Garcia,
R. A. Toscano and E. Diaz

Daniel Davoust^{..} and Christopher Jankowski^x

Instituto de Quimica, Universidad Nacional Autonoma de México,
Circuito Exterior, Ciudad Universitaria, Coyoacan 04510, México, D. F.

Faculté des études supérieures et de la recherche, Université de Moncton,
Moncton, N.-B., Canada, E1A 3E9

ABSTRACT

The homo and hetero correlated 2D experiments on the title product have led to the unambiguous assignment of proton and carbon NMR spectra.

^{..}Permanent address: Université de P. et M. Curie (Paris VI), 4 place Jussieu, Paris 75230, France.

^x To whom all inquiries should be addressed.

The study of the photochemical behaviour of germacranoles has attracted the attention of several groups.¹⁻³ The structures of photoproducts obtained in this reaction depend on the conformation of the starting material.²

Zexbrevin 1, a heliangolide (E,Z germacranoide) isolated from Zexmenia brevifolia,⁴ contains a 3(2H)-furanone moiety which confers a high degree of conformational rigidity on the molecule.

Photolysis of a methanolic solution of tetrahydrozexbrevin 2 yielded three photoproducts whose structures were determined by chemical and spectroscopic means and confirmed by X-ray diffraction analysis.⁵

The assignment of the ¹H NMR spectra of photoproducts A, B and C was made using the double resonance technique. We performed two sets of 2D NMR experiments on the photo tetrahydro zexbrevin A(3) in order to confirm the previous assignments:⁵

i) ¹H ¹H homonuclear correlation (COSY HOMO)
and ii) ¹H ¹³C heteronuclear correlation (HETERO).

Given the importance of this tetracyclic system to further studies of photoproducts from the same plant, as well as the unique character of the structure, it was necessary to obtain a reliable set of spectral data. The two techniques enabled us to realize these objectives completely.

i) ¹H ¹H Homonuclear Correlated Spectra of Phototetrahydro Zexbrevin A(3)

The highly rigid structure of this molecule is one cause of difficulty in assignment of protons (Fig. 1). Five methyl signals lie very close to each other, the three methylenes (C-2, C-9 and C-5) form an interesting coupling series, and of five methine protons only the isopropyl one could be unambiguously assigned from the one-dimensional NMR spectrum. Table 1 shows the assignment using high resolution 500 MHz spectra as confirmed by a COSY

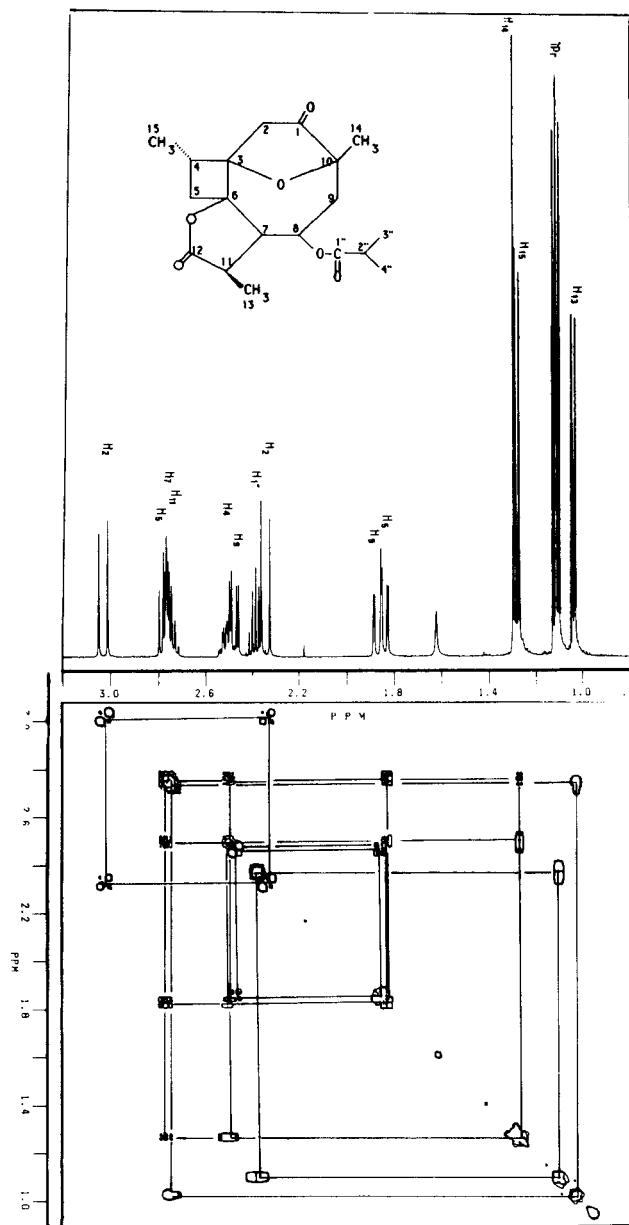


Fig. 1 Compound 3: proton two dimensional homonuclear chemical shift correlated spectrum (COSY): off diagonal contours of intensity indicated spin coupling between protons at chemical shifts given by two coordinates. The one dimensional 500 MHz spectrum is represented by contours along the diagonal ($+30^\circ$, CDCl_3).

Table 1

High resolution ^1H and ^{13}C NMR spectra of 3. Chemical shifts assignment.

Carbon	δ_{C}	Proton	δ_{H}	multiplet (JHz)*
C-1	215.0	-	-	
C-2	37.6	H-2	3.05 d	(19.0)
		H-2'	2.35 d	(19.0)
C-3	88.5	-	-	
C-4	35.1	H-4	2.52 m	(2.5, 7.5, 9.0)
C-5	39.2	H-5	2.78 dd	(9.0, 12.5)
		H-5'	1.83 dd	(2.5, 12.5)
C-6	83.0	-	-	
C-7	49.8	H-7	2.78 dd	(8.0, 1.0)
C-8	69.2	H-8	4.96 ddd	(1.0, 2.5, 4.2)
C-9	42.8	H-9	2.48 dd	(4.2, 15.5)
		H-9'	1.88 dd	(2.5, 15.5)
C-10	89.4	-	-	
C-11	36.6	H-11	2.75 m	(8.0, 6.5)
C-12	177.2	-		
C-13	8.8	H-13	1.03 d	(6.5)
C-14	24.4	H-14	1.29 s	
C-15	15.7	H-15	1.28 d	(7.5)
C-1"	175.7	-		
C-2"	33.9	H-2"	2.38 sept	(7.0)
C-3"	18.0	H-3"	1.11 d	(7.0)
C-4"	18.4	H-4"	1.12 d	(7.0)

* s - singlet, d - doublet, sept - septet, m - multiplet

experiment. The methylene protons display three AB patterns with the $\Delta\delta$ varying from 0.7 ppm (δ 3.05 and 2.35) for α -to carbonyl protons at C-2 to 0.95 ppm (δ 1.83 and 2.78) for cyclobutane-ring protons at C-5.

The COSY experiments clearly show several sequences of couplings: for the cyclobutane ring; for protons at C-9, C-8, C-7, C-11 and C-13; for iso propyl and the above-mentioned furan methylene.

Several long range couplings have been detected and confirmed by COSY experiments. For instance as the starting point of two analysis, the C-15 methyl protons (1.28) and H-5 (at 2.78) are showing the long range coupling of 3H2. The X-ray crystallography (5) shows that C-15 methyl proton and H-5 are synperiplanar, and consequently a long range coupling is observed. The small coupling between H-4 and H-5 of 2.5 Hz confirms this assumption.

The H-2 and H-2¹ (at 2.35 and 3.05 respectively) correlate strongly, the signal of H-5 (2.78) correlates with H-4 and H-5¹ (2.52 and 1.83) as well as with methyl H-15. Finally a strong correlation of H-11 and methyl H-13 protons have been observed.

The COSY experiment generally confirms the assignment proposed and permits the completion of the structural analysis with conformational preference and precise assignment of protons. In particular the previous assignment of the 2.75 - 2.78 area containing three protons has been corrected (Table 1).

ii) ¹H-¹³C Heteronuclear Correlated Spectra of 3

The exact assignment of carbon signals in the C-13 spectrum of 3 has been performed using 2D experiments as well as off-resonance spectra.

The 2D (Figure 2) heterocorrelated spectra recorded in CDCl₃ enables us to assign all protons bound to carbon and to correct the identification previously proposed.

The coaxial display of reference proton spectrum is made in order to enable easier identification of signals and to check the correlation in highly crowded areas. The carbon spectrum is shown separately (Figure 3) together with appropriate off-resonance notations.

Three quaternary carbons as well as three carbonyl signals have been identified from both INEPT and long range coupling experiments. As for the five methine carbon signals, the most difficult to assign were C-4 at 35.7 and

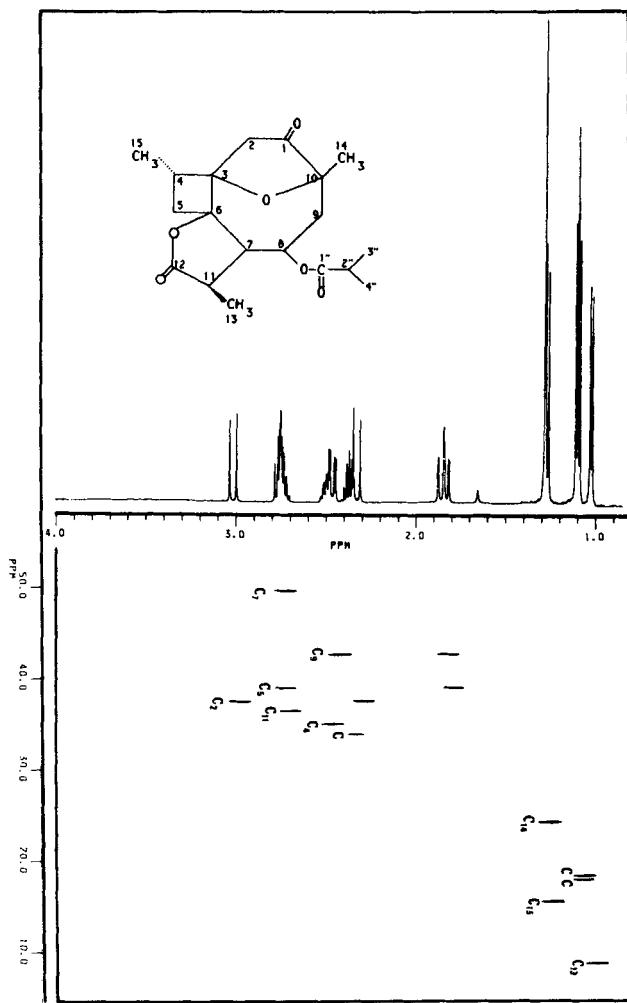


Fig. 2 Compound 3: proton carbon two dimensional heteronuclear chemical shift correlation spectrum (Hetero). The reference proton 500 MHz spectrum is shown on the axis ($+30^\circ$, CDCl_3).

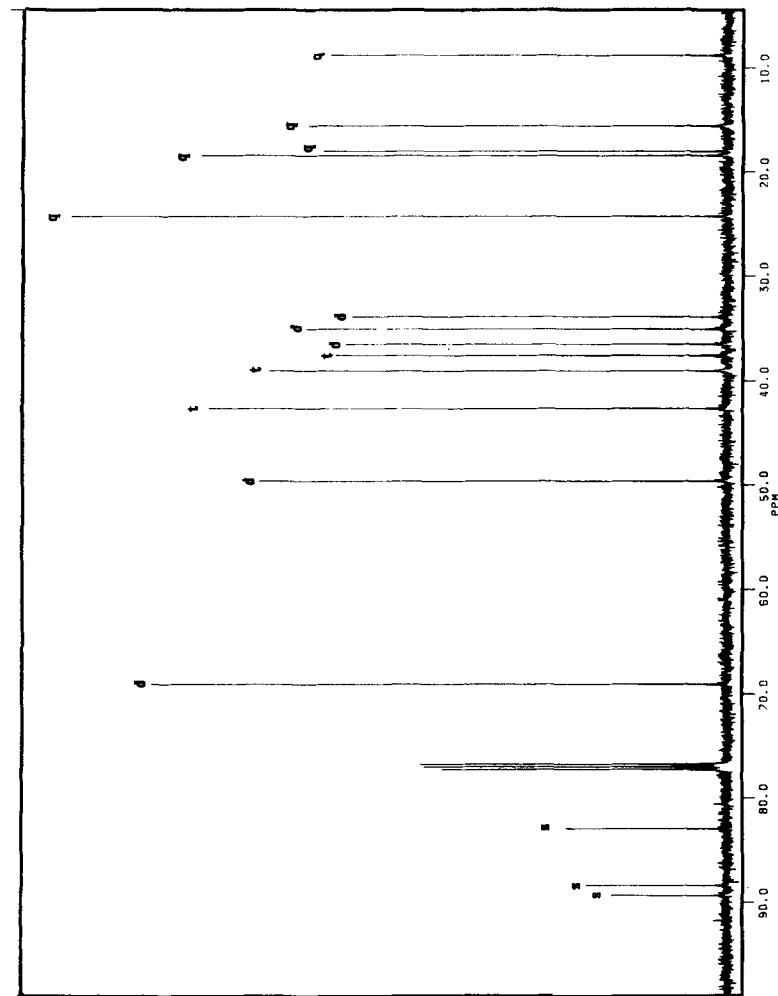


Fig. 3 Reference carbon 125 MHz spectrum of 3.

C-11 at 38.5. In spite of the ~3 ppm separation of these signals and the difference in chemical environment, the correct identification was made only after the correlation with the COSY spectrum previously reported. The remaining three methines were identified (isopropyl, C-8 and C-7) much more easily.

Three methylene carbons signals lie within a 5 ppm range. Their correct assignment follows from the 2D correlation spectrum. The most hindered belongs to methylene at C-2 (at 37.6 ppm). Two lower field methylenes, which were also previously wrongly assigned, have been interchanged: the signal at δ 39.0 ppm belongs to the C-5 and that at 42.6 to the C-9 methylene carbon.

The assignment of the three ring methyls was facilitated by 2D experiments, the most upfield signal belonging to the lactonic α -to carbonyl methyl. The methyl on the cyclobutyl ring as well as the angular methyl C-14 and the isopropyl methyls display the characteristic chemical shifts. Table 1 contains the correct final assignment of all carbons of phototetrahydro zexbrevin A(3).

Experimental

All experiments were performed on samples of 3 of variable weight as c.a. 10% CDCl_3 solutions in 10 mm sample tubes for ^{13}C and 5 mm tubes for ^1H (0.5 ml of solution used). All chemical shifts are expressed in δ (ppm) using TMS as internal standard. Coupling constants are expressed in Hz. The spectrometers were locked on the deuterium signal of the solvents. The 2D experiments together with other spectral identifications have been performed on Bruker AM-500 operating as 500 MHz for H-1 and 125.7 for C-13 and on Bruker WM 360.

Bruker Spectrometer was equipped with an Aspect 2000 computer, operating in the Fourier Transform mode. Without other specification, typical one dimensional spectral acquisition parameters were: spectral width 4000 Hz,

pulse width $4 \mu\text{s}$ ($90^\circ = 7.5 \mu\text{s}$) and 16384 time domain addresses. Acquisition time was 2.048s. No relaxation delay was used. Processing was also made with 16384 addresses (accuracy 0.488 Hz).

Two dimensional homonuclear correlated (COSY) spectra were recorded using the pulse sequence ($D_1 - 90^\circ - D_2 - 45^\circ - D_3$) n where D_2 and D_3 are the evolution and observation periods respectively. Spectra were recorded with 256 increments of D_2 from 0.003 ms to 128 ms. Acquisition time D_3 was 0.512 s for 2000 Hz of spectral width. Data were acquired in 2048 addresses at each D_2 value with the carrier in the center of the spectra. For 64 scans at each D_2 all data acquisitions time is 7.45 hours with $D_1 = 1$ s. Processing was performed with 2048 addresses in F_2 and 1024 addresses in F_1 domains. Prior to Fourier transform Free induction decay were multiplied by a non shifted sine bell window function in both domains.

ACKNOWLEDGMENTS

We would like to thank Drs. P. Fagerness (Texas A and M) and F. Toma (Saclay) for helpful comments. This work has been supported with a research grant from the Université de Moncton Research Council.

BIBLIOGRAPHY

1. J.K. Sutherland. *Tetrahedron* 30, 1651 (1974).
2. H. Yoshioka, T.J. Mabry and A. Higo. *J. Amer. Chem. Soc.* 92, 923 (1970).
3. R.E.K. Winter and R.F. Lindauer. *Tetrahedron* 32, 955 (1976).
4. A. Romo de Vivar, G. Guerrero, E. Diaz and A. Ortega. *Tetrahedron* 26, 1657 (1970).
5. L. Rodriguez-Hahn, M. Jiménez, R. Saucedo, M. Soriano-Garcia, R.A. Toscano and E. Diaz. *Tetrahedron* 39, 3909 (1983).
6. A. Aumelas, K. Jankowski, I.H. Sanchez, M.I. Larazza, I. Rojas, F.K. Brenna and E. Diaz. *Spectroscop. Letters* 20, (2) 125 (1987).

Date Received: 07/31/87
Date Accepted: 08/31/87